Witt Equivalence Classes of Quartic
نویسندگان
چکیده
It has recently been established that there are exactly seven Witt equivalence classes of quadratic number fields, and then all quadratic and cubic number fields have been classified with respect to Witt equivalence. In this paper we have classified number fields of degree four. Using this classification, we have proved the Conjecture of Szymiczek about the representability of Witt equivalence classes by quadratic extensions of quadratic fields.
منابع مشابه
Affine equivalence of quartic monomial rotation symmetric Boolean functions in prime power dimension
In this paper we analyze and exactly compute the number of affine equivalence classes under permutations for quartic monomial rotation symmetric functions in prime and prime power dimensions.
متن کاملThe graph of equivalence classes and Isoclinism of groups
Let $G$ be a non-abelian group and let $Gamma(G)$ be the non-commuting graph of $G$. In this paper we define an equivalence relation $sim$ on the set of $V(Gamma(G))=Gsetminus Z(G)$ by taking $xsim y$ if and only if $N(x)=N(y)$, where $ N(x)={uin G | x textrm{ and } u textrm{ are adjacent in }Gamma(G)}$ is the open neighborhood of $x$ in $Gamma(G)$. We introduce a new graph determined ...
متن کاملModuli Spaces for Rings and Ideals
The association of algebraic objects to forms has had many important applications in number theory. Gauss, over two centuries ago, studied quadratic rings and ideals associated to binary quadratic forms, and found that ideal classes of quadratic rings are exactly parametrized by equivalence classes of integral binary quadratic forms. Delone and Faddeev, in 1940, showed that cubic rings are para...
متن کاملDo the symmetric functions have a function-field analogue?
2. The Carlitz-Witt suite 5 2.1. The classical ghost-Witt equivalence theorem . . . . . . . . . . . . . 5 2.2. Classical Witt vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3. The Carlitz ghost-Witt equivalence theorem . . . . . . . . . . . . . . 9 2.4. Carlitz-Witt vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.5. F -modules . . . . . . . . . . . . . . ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010